We propose a generalized method of moments (GMM) Lagrange multiplier statistic, i.e., the K statistic, that uses a Jacobian estimator based on the continuous updating estimator that is asymptotically uncorrelated with the sample average of the moments. Its asymptotic χ2 distribution therefore holds under a wider set of circumstances, like weak instruments, than the standard full rank case for the expected Jacobian under which the asymptotic χ2 distributions of the traditional statistics are valid. The behavior of the K statistic can be spurious around inflection points and maxima of the objective function. This inadequacy is overcome by combining the K statistic with a statistic that tests the validity of the moment equations and by an exte...